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Abstract— 3D reconstruction enables robots to perceive the
three-dimensional structure of the environments, making it
possible for many downstream tasks such as object detection
and scene understanding. The performance of these tasks,
though, heavily relies on the quality of data input, as incomplete
or missing geometry information can lead to poor results.
Recent training loss functions designed for deep learning-based
point cloud completion, such as Chamfer distance (CD) and its
variants (such as HyperCD [1]), imply a good gradient weight-
ing scheme can significantly boost performance. However, these
CD-based loss functions usually require data-related parameter
tuning, which can be time-consuming for data-extensive tasks.
To address this issue, we aim to find a family of weighted
training losses (weighted CD) that requires no parameter tuning.
To this end, we propose a search scheme, Loss Distillation via
Gradient Matching, to find good candidate loss functions by
mimicking the learning behavior in backpropagation between
HyperCD and weighted CD. Once this is done, we propose
a novel bilevel optimization formula to train the backbone
network based on the weighted CD loss. We observe that:
(1) with proper weighted functions, the weighted CD can
always achieve similar performance to HyperCD, and (2) the
Landau weighted CD, namely Landau CD, can outperform
HyperCD for point cloud completion and lead to new state-
of-the-art results on several benchmark datasets. Our demo
code is available at https://github.com/Zhang-VISLab/
IROS2024-LossDistillation.

I. INTRODUCTION

The applications of 3D point clouds widely expand to
every corner of industrial and civilian areas like object
recognition [2], mapping [3], robotic grasping [4], and pose
estimation [5]. However, because of occlusions, transparency,
light reflections, or the limitation of the equipment’s posi-
tion and precision, the point clouds are usually sparse and
incomplete [6]. To mitigate this issue, many learning-based
point cloud completion methods [7] have been introduced,
where supervised learning featured with a standard encoder-
decoder architecture has emerged as the predominant choice
for many researchers. These methods have achieved state-of-
the-art performance on many benchmark datasets for point
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Fig. 1. Illustration of distributions (with scaling and proper hyperparame-
ters) that are similar to the gradient weighting distribution from HyperCD
in backpropagation and can be taken as candidate weighting functions in
weighted CD.

cloud completion [8], [9], [10], [11].

A. Training Loss

Chamfer distance (CD) serves as a popular training loss
in point cloud completion for training neural networks such
as SnowflakeNet [9] and PointAttN [11]. It evaluates the
dissimilarity between any two point clouds by calculating
the average distances of each point in one set to its nearest
matching point in the other set. CD can faithfully reflect the
global dissimilarity by treating the distances of all nearest-
neighbor pairs between both sets with equal importance.
However, it is not an ideal loss function solution for net-
work training. The formation of CD works as the uniform
distribution weight operation for paired distance, and thus,
it is likely to be negatively affected by some outlier points.
As the consequence, the sensitivity to outliers often results
in a phenomenon where a considerable number of points
from one set correspond to a single point in the other
set, leading to the visual formation of small and dense
clusters. This behavior can readily disrupt the commonly
used assumption of uniform sampling from the underlying
geometric surfaces, which is often used in the generation
of point clouds. To mitigate these aforementioned problems
in point cloud completion, several CD variant loss functions
have been proposed: Density-aware CD (DCD) [12], InfoCD
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[13], and HyperCD [1].

B. Motivation
From a high-level understanding, we would like to pro-

pose a general method to efficiently learn loss functions
for downstream tasks, as this is crucial for deep learning
nowadays. Different from conventional hyperparameter tun-
ing with scalars, we aim to explore functional spaces to
search for good functions. Considering the specifications of
point cloud completion, the sensitivity of CD to the outliers
inspires us that the distances in the metric as a training
loss should be weighted in some form rather than uniform.
This provides us a good testbed to evaluate our high-level
idea because currently, weighted CD is highly underexplored
in this field. To address this issue, we borrow the idea
from network distillation, where a simpler student network is
trained to mimic the behavior of a more complicated teacher
network. Rather than networks, we aim to learn weighted
CD losses instead.

C. Approach: Loss Distillation via Gradient Matching
Loss functions guide the networks during training based on

gradients through backpropagation, while gradients contain
all the knowledge from the loss for training the networks. If
we can reproduce the exact gradients in training, we can
then reproduce the performance of a certain loss. Based
on such considerations, we propose a family of training
losses for point cloud completion using weighted CD to
mimic the learning behavior of HyperCD by approximately
matching the gradients. As illustrated in Fig. 1 (see more
details in Sec. III-C), by taking the gradient weighting
function in HyperCD as a reference, we can easily find some
distributions as candidate weighting functions for weighted
CD to approximate the reference curve, especially when the
distance is small.

D. Contributions
We list our main contributions as follows:
• We propose an efficient gradient-matching method for

loss distillation to select candidate weighting functions
for weighted CD from a pool of potential distributions.

• We demonstrate strong performance for point cloud
completion based on weighted CD that can always be
similar to our reference loss, even leading to state-of-
the-art results on several benchmark datasets.

• Our loss distillation method is so naive, yet effective
and efficient, to determine good loss functions that all
the calculations can be done using simple simulated
data with mathematical derivations. It does provide
us the solutions for our problems and potentially for
other downstream tasks as well by matching reference
gradients.

II. RELATED WORK

A. Distance Metrics for Point Cloud Completion
Distance in point clouds refers to a non-negative function

that measures the dissimilarity among them [14]. Consid-
ering the keen demand for high-density point cloud, the

structures of point cloud completion networks have become
increasingly complicated [15]. CD and its variants are exten-
sively used in almost all recent learning-based methods for
point cloud completion [16], [17], [18], [19].

B. Knowledge Distillation (KD)

Generally, KD [20] refers to a model compression method
in machine learning, where a smaller, more compact neural
network (i.e. student model) is trained to replicate the
behavior of a larger, more complex network (i.e. teacher
model) [21]. The teacher model is used to produce the
outputs of knowledge, while the student model tries to learn
such knowledge by mimicking the outputs. Some nice survey
papers on this topic can be found in [22], [23], [24].

C. Weighted Chamfer Distance

In 2D image processing, weighted distances have become
notable in generating distance maps from point lattice [25]
and image segmentation [26]. In the distance map generation
task, this methodology facilitates the computation of rotation-
invariant distances through optimal weighting, particularly
in face-centered cubic [27] and body-centered cubic lattice
structures [25], [28]. In 3D point cloud applications, the
weighted CD emerges as a pivotal loss function and metric
[29], [30], [31]. However, to the best of our knowledge, in
point cloud completion we do not find any reference based
on weighted CD.

III. OUR APPROACH

A. Chamfer Distance (CD)

We denote (xi, yi) as the i-th point cloud pair, xi = {xij}
and yi = {yik} as two sets of 3D points, and d(·, ·) as a
certain distance metric. Then the CD loss for point clouds
can be defined as follows:

DCD(xi, yi)

=
1

|xi|

|xi|∑
j=1

min
k

d(xij , yik) +
1

|yi|

|yi|∑
k=1

min
j

d(xij , yik), (1)

where | · | denotes the cardinality of a set. Note that for point
cloud completion, function d is usually defined in Euclidean
space, referring to

d(xij , yik) =

{
∥xij − yik∥ as L1-distance
∥xij − yik∥2 as L2-distance (2)

where ∥ · ∥ denotes the ℓ2 norm of a vector.

B. Hyperbolic Chamfer Distance (HyperCD)

Based on Eq. 1, HyperCD defines the function d in a
hyperbolic space as follows:

d(xij , yik) = arccosh
(
1 + α∥xij − yik∥2

)
, α > 0. (3)
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Fig. 2. Illustration of (a) reference distance distribution from HyperCD, and (b-c) curve fitting using different approximations of z(W ).

C. Loss Distillation with Weighted CD

Weighted Chamfer Distance. In this paper, we propose the
following formula for our weighted CD:

DW (xi, yi) =
1

|xi|

|xi|∑
j=1

f(d̃ijk)d̃ijk +
1

|yi|

|yi|∑
k=1

f(d̃ikj)d̃ikj

s.t. d̃ijk = min
k

d(xij , yik), d̃ikj = min
j

d(xij , yik). (4)

Clearly, the vanilla CD is a special case of our new formula
with f(d̃ijk) = f(d̃ikj) = 1,∀d̃ijk, d̃ikj ≥ 0.

Loss Distillation via Gradient Matching. For point
cloud completion, let us denote (xi, yi) as the output from
the network and the ground-truth point cloud, respectively.
Precisely, we denote xi = h(x̃i;ω) where function h is
presented by the network with parameters ω and x̃i is an
incomplete point cloud as the input. Therefore, each point
xij is also a function of ω, and so are d̃ijk and d̃ikj .

Recall that the goal of gradient matching is to develop
effective losses based on weighted CD by mimicking the
learning behavior of HyperCD. To simplify our explanation
of gradient matching for loss distillation, we denote g

(H)
ijk =

arccosh
(
1 + αd̃2ijk

)
, g

(W )
ijk = f(d̃ijk)d̃ijk. To match a pair

of gradients from both losses, we propose minimizing their
difference as follows:

∥∥∥∥∂DH

∂ω
−

∂DW

∂ω

∥∥∥∥
≤

1

|xi|

∥∥∥∥∥∥
∑
j

∂g
(H)
ijk

∂ω
−

∂g
(W )
ijk

∂ω

∥∥∥∥∥∥ +
1

|yi|

∥∥∥∥∥∥
∑
k

∂g
(H)
ikj

∂ω
−

∂g
(W )
ikj

∂ω

∥∥∥∥∥∥
≤

1

|xi|
∑
j

∥∥∥z(H)
ijk − z

(W )
ijk

∥∥∥ ∥∥∥∥∥∂d̃ijk

∂ω

∥∥∥∥∥ +
1

|yi|
∑
k

∥∥∥z(H)
ikj − z

(W )
ikj

∥∥∥ ∥∥∥∥∥∂d̃ikj

∂ω

∥∥∥∥∥
where z

(H)
ijk =

2αd̃ijk√
(1+αd̃2

ijk)
2−1

, z
(W )
ijk = f ′(d̃ijk)d̃ijk +

f(d̃ijk) are gradient weights for the HyperCD loss, DH ,
and the weighted CD loss, respectively (resp. z(H)

ikj , z
(W )
ikj ),

and f ′ denotes the derivative of function f .
Minimizing the LHS of Eq. 5 is very challenging, because

we do not have prior knowledge about the network and data.
To get rid of the effects of such unknown information in

learning, we instead try to minimize the RHS of Eq. 5 with
the following assumptions on
• Network: All the gradients can be upper-bounded.
• Data: |xi|, |yi| are sufficiently large so that the distribu-

tions of d̃ijk, d̃ikj follow the reference distance distribution
from HyperCD.

In point cloud completion, both assumptions can hold easily.
Finally, due to the symmetry of Eq. 5, we propose the
following minimization problem for loss distillation:

min
f∈F

Ed̃∼D̃

∥∥∥z(H)(d̃)− z(W )(d̃)
∥∥∥

≈min
f∈F

∑
d̃

p(d̃)
∥∥∥z(H)(d̃)− z(W )(d̃)

∥∥∥ , (5)

where z(H)(d̃) = 2αd̃√
(1+αd̃2)

2−1
, z(W )(d̃) = f ′(d̃)d̃ + f(d̃),

F denotes the feasible space for f , D̃ denotes the reference
distance distribution, and E denotes the expectation operator.
Note that when Eq. 5 reaches 0 , it will guarantee to recover
the performance of HyperCD using weighted CD.

TABLE I
DISTRIBUTIONS AS WEIGHTING FUNCTIONS IN WEIGHTED CD.

Distribution Params Mode m PDF

Chi-Squared k max(k − 2, 0)
1

2k/2Γ(k/2)
xk/2−1e−x/2

Extreme Value β 0
1

β
e−(z+e−z), z =

x

β

Weibull k, λ

λ
(

k−1
k

)1/k
, k > 1,

0, k ≤ 1.

k

λ

(x

λ

)k−1
e−(x/λ)k

Log-Logistic α, β

α
(

β−1
β+1

)1/β
, if β > 1,

0, otherwise

β

x

(
1 +

( x

α

)−β
)−1−β

Gamma α, β

{
α−1
β

, for α ≥ 1,

0, for α < 1

βαxα−1e−βx

Γ(α)

Logistic σ 0
e−x/σ

σ(1 + e−x/σ)2

Normal σ 0
1

σ
√
2π

exp

(
−

x2

2σ2

)

Landau Approx. - 0
1

√
2π

exp

{(
−
x+ e−x

2

)}



D. Optimization

To solve Eq. 5, we first specify the notations in our
implementation as follows:

• Feasible space F: Table I lists some well-known distribu-
tions that we tested as the weighting functions for weighted
CD. Each distribution defines an F , and we try to learn
its parameters, if exist, to determine f .

• Distance d̃: Recall that z(H) in HyperCD is monotonically
decreasing and d̃ = 0 reaches the maximum. To mimic
this behavior, we only consider the partial distributions
beyond their modes. Correspondingly, the input data for
each distribution is its mode, m, plus distance d̃.

• Reference distance distribution D̃ and samples d̃: Fig. 2 (a)
illustrates the distance distribution from HyperCD, which
is used as D̃ in our implementation. As we see, about
99% of point pairs, i.e. d̃, fall into [0, 0.01]. Therefore, to
optimize Eq. 5 efficiently, we uniformly sample d̃ from
[0, 0.01] with step 2e-4, and the corresponding probabili-
ties are sampled from Fig. 2 (a).

• Approximation of z(W ): The exact computation of f ′ in
z(W ) causes trouble, even if we may know its function (e.g.
for some functions we may not have their analytical solu-
tions of their gradients). To address this issue, we propose
the following two ways: (1) z(W )(d̃) ≈ f(m+ d̃), because
d̃ ∈ [0, 0.01] is very small and thus the calculation of z(W )

may be dominated by the second term; or (2) substituting
f ′(d̃) ≈ 1

∆d̃
(f(m+ d̃+∆d̃)− f(m+ d̃)) into z(W ) with

small value ∆d̃ ≥ 0. Based on these two strategies, we plot
the curves in Fig. 2 (b-c), respectively, where all the curves
are rescaled by the maximum values and ordered by the
minimum of Eq. 5. The optimal parameters are determined
using a grid search for simplicity and efficiency. As we
see, all eight distributions can well fit the reference curve
from HyperCD, and the parameters listed in the figure
are used to report the performance of weighted CD in
our experiments. Finally, we list our gradient matching
algorithm in Alg. 1.

Algorithm 1 Loss Distillation via Gradient Matching
Input : a PDF f with parameters A, z(H), {(d̃, p(d̃))}
Output: A
Discretize the parameter space into {Ai} for grid search;
Compute the mode mi for each Ai used in z(W );
A∗ = argmin{Ai}

∑
d̃ p(d̃)

∥∥∥z(H)(d̃)− z(W )(d̃)
∥∥∥;

return A ← A∗

E. Bilevel Optimization with Weighted CD

Once we choose the weighting function in weighted CD,
we propose optimizing the following optimization problem

Algorithm 2 Point Cloud Completion with Weighted CD
Input : a weighting function f , a network h with learnable

parameters ω, training data {(x̃i, yi)}
Output: ω
repeat

Pick a sample (x̃i, yi) uniformly at random;
Compute d̃ijk, ∀j in x̃i and d̃ikj , ∀k in yi;
Compute the weighted CD loss based on Eq. 4;
Update the parameters ω using the gradient of the loss;

until converges;
return ω

for point cloud completion, given training samples {(x̃i, yi)}:

min
ω

∑
i

 1

|xi|

|xi|∑
j=1

f(d̃ijk)d̃ijk +
1

|yi|

|yi|∑
k=1

f(d̃ikj)d̃ikj


s.t.xi = h(x̃i;ω) = {xij},∀i,

d̃ijk = min
k

d(xij , yik), d̃ikj = min
j

d(xij , yik). (6)

Essentially, this defines a bilevel optimization problem that
can be solvable using the iterative differentiation algorithm
[32], leading to our algorithm in Alg. 2. In fact, the learn-
ing algorithms for both HyperCD follow the same bilevel
optimization strategy as ours.

IV. EXPERIMENTS

A. Datasets

In our experiments we use PCN [33], ShapeNet-55 [8],
ShapeNet-Part [34], and KITTI [35]. For the dataset details
of PCN, ShapeNet-55, and ShapeNet-Part, you may refer to
the HyperCD paper [1]. KITTI is composed of a sequence
of real-world Velodyne LiDAR scans, also derived from
the PCN dataset [33]. For each frame, the car objects are
extracted according to the 3D bounding boxes, which results
in 2,401 partial point clouds. The partial point clouds in
KITTI are highly sparse and do not have complete point
clouds as ground truth. Datasets are split into training,
testing, and validation sets by the ratios of 70%, 20%, and
10%, respectively.

B. Network Backbones

We compare our method using 7 different backbone
networks, i.e. FoldingNet [36], PMP-Net [37], PoinTr [8],
SnowflakeNet [9], CP-Net [38], PointAttN [11] and Seed-
Former [10], by replacing the CD loss with our weighted
CD losses wherever it occurs.

C. Hyperparameters

The hyperparameters in the weighting functions are se-
lected from the candidate functions shown in Fig. 2 (b-c) that
achieve better performance. Except that the learning rates are
tuned slightly, the training hyperparameters such as batch
sizes and balance factors in the original losses are kept the
same as HyperCD.



Fig. 3. Visualization of the real-world(KITTI) benchmark (Row 1: sparse input, Row 2: HyperCD, Row 3: LandauCD).

D. Evaluation

Following the literature, we evaluate the best performance
of all the methods using vanilla CD (lower is better). We also
use F1-Score@1% [39] (higher is better) to evaluate the per-
formance on ShapeNet-55. For KITTI, we use Fidelity and
MMD metrics [8]. For better comparison, we cite the original
results of some other methods on PCN, ShapeNet-55, and
KITTI. In each table of the results, the top-performing results
are highlighted in red, while the second-highest ones are
marked in blue.

Fig. 4. Visualization of ShapeNet-55 benchmark. Gray represents the partial
input. Yellow represents HyperCD. Green represents Landau CD.

TABLE II
CP-NET COMPARISON RESULTS ON SHAPENET-PART WITH DIFFERENT

LOSSES. IN THE SEQUEL, WE COLOR THE BEST PERFORMANCE WITH

red, AND SECOND BEST WITH blue.

Loss Function Loss Params. L2-CD×103

CD \ 4.16
EMD \ 15.38

Truncated CD thd=0.2 4.72
DCD [12] α = 40, γ=0.5 5.74

HyperCD [1] α=1 4.03

Weibull CD k=2, λ=5 4.19
Normal CD σ=1.4 4.17
Logistic CD σ=1 4.14

Log-Logistic CD α=5, β=2 4.12
Extreme-Value CD σ=1.4 4.08
Chi-Squared CD k=3 4.07

Gamma CD k=2, θ=2.5 4.03
Landau CD \ 4.00±0.005

E. Ablation Study

For this purpose, we use CP-Net as the backbone network
and train it on ShapeNet-Part with different losses. We refer
to our different weighted CDs based on the names of the
distributions as weighting functions. For instance, we call a
weighted CD Landau CD if the weighting function follows
the Landau approximation distribution.

F. Performance

Table II summarizes our comparison results where we
report the best performance for all the methods (our loss
parameters are chosen from Fig. 2 (b-c) through gradient
matching). As we see here, 6 out of 8 weighted CD losses
perform better than CD, and 4 of them perform similarly
to HyperCD (within the difference of ±0.05). Surprisingly
our Landau CD even beats the state-of-the-art. Notice that the
performance ranking of weighted CD losses is not consistent
with the function matching ranking in Fig. 2 (b-c), indicating
that the selected weighting functions have to be tested with
the weighted CD losses. Overall, such results demonstrate
that our weighted CD can mimic the learning behavior of
HyperCD, with proper weighting functions and parameters,
and have great potential for boosting CD performance sig-
nificantly.

G. Convergence

Fig. 5 provides a direct visual juxtaposition of the con-
vergence trends, revealing that our weighted CD losses
exhibit a more rapid convergence compared to HyperCD.
Notably, during the initial 50 epochs, the curves of weighted
CD loss functions consistently remain lower than the ones
of HyperCD, and eventually, all the curves converge to a
similar loss, leading to similar performance as well. Such
convergence behavior of our weighted CD also demonstrates
the success of our loss distillation method.

H. State-of-the-art Comparison

PCN. In accordance with the literature, we report perfor-
mances in terms of vanilla CD with L1-distance in Table III.
As we can see, most of weighted CD losses achieve above-
average results compared with the baseline networks used
in training. In particular, we obtain some new state-of-the-
art results using Landau CD. Meanwhile, Extreme-Value
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TABLE III
COMPARISON ON PCN IN TERMS OF PER-POINT L1-CD ×1000.

Methods Plane Car Chair Lamp Couch Avg.

FoldingNet [36] 9.49 12.61 15.55 16.41 15.97 14.01
HyperCD + F. 7.89 10.67 14.55 13.87 14.09 12.21
Landau CD + F. 7.30 10.46 13.00 11.92 13.39 11.21

PMP [37] 5.65 9.64 9.51 6.95 10.83 8.55
HyperCD + PMP 5.06 9.30 9.11 6.83 11.01 8.26
Landau CD + PMP 4.59 8.90 8.57 6.38 10.47 7.78

PoinTr [8] 4.75 8.68 9.39 7.75 10.93 8.33
HyperCD + P. 4.42 8.22 8.22 6.62 9.62 7.42
Landau CD + P. 4.12 8.07 7.82 6.30 9.28 7.12

SnowflakeNet [9] 4.29 8.08 7.89 6.07 9.23 7.11
HyperCD + S. 3.95 7.88 7.37 5.75 8.94 6.78
Landau CD + S. 3.98 7.78 7.40 5.76 8.86 6.76

PointAttN [11] 3.87 7.63 7.43 5.90 8.68 6.70
DCD + PA. 4.47 8.14 8.12 6.75 9.60 7.41
HyperCD + PA. 3.76 7.49 7.06 5.61 8.48 6.48

Gamma CD + PA. 3.83 7.58 7.15 5.69 8.56 6.56
Chi-Sq. CD + PA. 3.77 7.49 7.08 5.64 8.50 6.49
Log-Logis. CD + PA. 3.78 7.47 7.10 5.63 8.51 6.50
Ex.-Va. CD + PA. 3.73 7.46 7.03 5.61 8.46 6.46
Landau CD + PA. 3.72 7.46 7.04 5.60 8.47 6.46

SeedFormer [10] 3.85 8.06 7.06 5.21 8.85 6.61
DCD + SF. 16.42 21.08 20.06 18.30 26.51 20.47
HyperCD + SF. 3.72 7.79 6.83 5.11 8.61 6.41

Log-Logis. CD + SF. 3.86 7.79 6.89 5.15 8.64 6.47
Gamma CD + SF. 3.84 7.82 6.89 5.13 8.63 6.46
Chi-Sq. CD + SF. 3.75 7.71 6.80 5.11 8.48 6.45
Ex.-Va. CD + SF. 3.73 7.70 6.80 5.08 8.48 6.36
Landau CD + SF. 3.65 7.64 6.80 5.04 8.57 6.34

and Chi-Squared CD losses also achieve better performance
than HyperCD in more complicated backbone networks
PointAttN and SeedFormer. In the sequel, by default we will
only report the results using Landau CD, due to its great
performance on PCN.

KITTI. In order to validate the effectiveness of weighted CD
loss functions in real-world scenarios, we follow the method
used in [40] to fine tune two baseline models with Landau
CD on ShapeNetCars [33] and evaluate the performance on
KITTI. We report the Fidelity and MMD metrics in Table IV.
We observe that Landau CD can improve the baselines con-

TABLE IV
RESULTS ON LIDAR SCANS FROM KITTI DATASET UNDER THE

FIDELITY AND MMD METRICS.

FoldingNet HyperCD+F. Landau CD+F.

Fidelity ↓ 7.467 2.214 1.956
MMD ↓ 0.537 0.386 0.342

PoinTr HyperCD+P. Landau CD+P.

Fidelity ↓ 0.000 0.000 0.000
MMD ↓ 0.526 0.507 0.503

sistently with even better results compared with HyperCD.
Furthermore, we present comprehensive visualization results
in Fig. 3. Note both HyperCD and Landau CD are able to
recover the general geometrical structure from partial sparse
input, Landau CD, however, perform better with less noise
and outliers, especially on small details on corners and edges.

TABLE V
COMPARISON ON SHAPENET-55 IN TERMS OF L2-CD×1000 AND F1

SCORE (HIGHER THE BETTER).

Methods CD-S CD-M CD-H Avg. F1

FoldingNet 2.67 2.66 4.05 3.12 0.082
HyperCD + F. 2.43 2.45 3.88 2.92 0.109

Landau CD + F. 2.15 2.46 3.39 2.66 0.141

PoinTr 0.58 0.88 1.79 1.09 0.464
HyperCD + P. 0.54 0.85 1.73 1.04 0.499

Landau CD + P. 0.43 0.70 1.47 0.88 0.527

SeedFormer 0.50 0.77 1.49 0.92 0.472
HyperCD + S. 0.47 0.72 1.40 0.86 0.482

Landau CD + S. 0.45 0.73 1.39 0.86 0.489

ShapeNet-55. Table V enumerates the performance across
three levels of difficulty with the average. Qualitative eval-
uation results are shown in Fig. 4 as well from Seedformer
trained with HyperCD and Landau CD as a supplement to
numerical values. We can see Landau CD can successfully
learn the general geometrical structure like HyperCD, which
matches our intuition. When dealing with corners and edges,
Landau CD even outperforms HyperCD with reduced noise
and outliers.

V. CONCLUSION

In this paper, we propose a novel loss distillation method
for point cloud completion by mimicking the learning behav-
ior of HyperCD based on weighted CD. To this end, we pro-
pose an efficient and effective gradient matching algorithm
to search for potential weighting functions from a pool of
distributions for weighted CD by comparing them with the
reference curve from HyperCD. This eventually converts to a
bilevel optimization problem in training backbone networks,
with empirical convergence based on our iterative differen-
tiation algorithm. We conduct comprehensive experiments
using real-world datasets such as KITTI[35] to demonstrate
the effectiveness of weighted CD losses, particularly Landau
CD which achieves new state-of-the-art results on several
benchmark datasets.
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