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ABSTRACT

Set-to-set matching aims to identify correspondences between two sets of un-
ordered items by minimizing a distance metric or maximizing a similarity measure.
Traditional metrics, such as Chamfer Distance (CD) and Earth Mover’s Distance
(EMD), are widely used for this purpose but often suffer from limitations like sub-
optimal performance in terms of accuracy and robustness, or high computational
costs - or both. In this paper, we propose a novel, simple yet effective set-to-set
matching similarity measure, GPS, based on Gumbel prior distributions. These
distributions are typically used to model the extrema of samples drawn from various
distributions. Our approach is motivated by the observation that the distributions
of minimum distances from CD, as encountered in real-world applications such
as point cloud completion, can be accurately modeled using Gumbel distributions.
We validate our method on tasks like few-shot image classification and 3D point
cloud completion, demonstrating significant improvements over state-of-the-art
loss functions across several benchmark datasets. Demo code is included in the
supplementary file.

1 INTRODUCTION

Problem. Set-to-set matching involves comparing and identifying correspondences between two sets
of items, which can be modeled as a bipartite graph matching problem. In this framework, the items
in each set are represented as nodes on opposite sides of a bipartite graph, with the edges representing
the correspondences. This task is challenging due to several factors: (1) The matching process must be
invariant to the order of both the sets and the items within them; (2) Finding effective representations
for each set is critical, as it greatly influences performance; (3) Computing a meaningful similarity
score between sets, often used as a loss function for learning feature extractors, is a nontrivial problem.
Our goal is to develop a similarity measure that is both effective and efficient for set-to-set matching.

Distance Metrics. Set-to-set matching has been extensively studied in various research fields (Chang
et al., 2007; Zhou et al., 2017a; Saito et al., 2020; Jurewicz and Derczynski, 2021; Yu et al., 2021a;
Kimura et al., 2023). Several distance metrics, such as Chamfer Distance (CD) (Yang et al., 2020),
Earth Mover’s Distance (EMD) (Zhang et al., 2020a; Yang et al., 2024), and Wasserstein Distance
(WD) (Zhu and Koniusz, 2022), are commonly used to evaluate set-matching scores in different
applications. These metrics can generally be considered special cases of optimal transportation
(OT) for graph matching (Saad-Eldin et al., 2021), which aims to find the most efficient way to
move a distribution of “materials” to another distribution of “consumers” by minimizing the total
transportation cost. However, it is well known that these distance metrics often face challenges such
as poor performance (e.g., matching accuracy and robustness of CD (Lin et al., 2023a)) or high
computational complexity (e.g., EMD and WD (Nguyen et al., 2021; Rowland et al., 2019; Kolouri
et al., 2019)), or both, which limit their applicability in large-scale learning. To address this issue,
some new distance metrics, such as density-aware CD (DCD) (Wu et al., 2021), HyperCD (Lin et al.,
2023b) and InfoCD (Lin et al., 2023a), have been developed as training losses in the literature to
improve matching performance while achieving linear complexity similar to CD.

Limitations of Traditional Distance Metrics. Existing metrics fail to adequately capture the
similarity between sets in terms of their underlying distributions. In many real-world appli-
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Figure 2: Illustration of (a-b) samples from the same/different distributions, and (c) data fitting with
Gumbel prior distributions for 1st, 2nd, 3rd smallest distance distributions between two 2D point sets.

cations, such as classification, the primary concern is not the direct similarity between indi-
vidual data instances but rather their similarity in some (latent) space, such as class labels.
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Figure 1: Illustration of three point sets ran-
domly sampled from a circular distribution
(i.e., Distr. 1) and a Gaussian whose mean
is conditional on the circle (i.e., Distr. 2).

For instance, in Figure 1 in the context of Chamfer Dis-
tance (CD), the distance between the sets ◦ and × is
larger than that between the sets ◦ and +, despite ◦
and × being sampled from the same underlying distri-
bution. This highlights a critical issue: when asking
"how likely are two sets of points to come from the same
distribution?" CD and similar metrics may fail to re-
flect distributional similarity accurately. Consequently,
traditional distance metrics are effective at measuring
differences in observations (e.g., point clouds or images)
but may struggle to capture deeper, potentially unknown
abstractions such as distributions or class labels.

Distributional Similarity. This concept is widely ap-
plied in natural language processing to assess word
similarities based on the contexts in which they appear
(Lee, 2000). For example, to measure the similarity between words u and v, both words can be repre-
sented in a vector space by counting their co-occurrences with words from a predefined vocabulary
within local contexts such as sentences or paragraphs. Various similarity functions are then applied to
these vectors to compute their similarity. To adapt this idea for set-to-set matching, we treat the K
nearest neighbors (KNNs) of a point from the opposite set as its "co-occurrences." As illustrated in
Figure 2(a-b), the nearest neighbors of a red × can be used to represent it in a vector space, with the
blue ◦ acting as its "context." Samples from the same distribution tend to have more similar distance
patterns than those from different distributions, as seen with the two red × in the figure.

Gumbel Distributions. In probability theory, Gumbel distributions are used to model the distribution
of extreme values (maxima or minima) from various samples. We find that Gumbel distributions
effectively model the KNN distances between two sets of feature vectors. This is shown in Figure 2 (c),
where the two 2D point sets are sampled from the circular distribution shown in Figure 1. We compute
the negative-log distances between each point in one set and its 1st, 2nd, and 3rd nearest neighbors
in the other set, transforming these distances into normalized histograms representing probabilities.
These probability distributions are then fitted with Gumbel distributions (see Definition 1).

Our Approach and Contributions. We propose a novel probabilistic method for set-to-set matching
called GPS (Gumbel Prior Similarity) based on distributional similarity and Gumbel distributions.
This method measures the similarity between the underlying distributions generating the sets. Specif-
ically, we use the log-likelihood of Gumbel distributions as our similarity measure, modeling the
distributions of negative-log distances between the KNNs of the sets. GPS can be seamlessly inte-
grated into existing neural network training frameworks, for instance, by using the negative of GPS
as a loss function, while maintaining the same linear computational complexity as CD. We propose a
comprehensive analysis of GPS and its influence on learning behavior. We are the first to leverage
statistical information from KNNs for set-to-set matching. To demonstrate the efficacy and efficiency
of GPS, we conduct extensive experiments on tasks such as few-shot image classification and 3D
point cloud completion, achieving state-of-the-art performance across several benchmark datasets.
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2 RELATED WORK

Set-to-Set Matching. Many tasks in computer vision and machine learning, such as multiple instance
learning (Ilse et al., 2018; Maron and Lozano-Pérez, 1997), shape recognition (Su et al., 2015; Shi
et al., 2015), and few-shot image classification (Afrasiyabi et al., 2022), can be framed as set-to-set
matching problems, where the goal is to identify correspondences between sets of instances. The
unordered nature of these sets requires the extraction of invariant features that are not affected by
the sequence of elements (Choi et al., 2018). Some research addresses this challenge by modifying
neural network architectures. For example, Vinyals et al. (2016) introduced matching networks for
one-shot learning, while Lee et al. (2019) proposed the Set Transformer, which uses an attention-
based mechanism to model interactions among elements in input sets. Saito et al. (2020) developed
exchangeable deep neural networks. Recently, Kimura (2022) analyzed the generalization bounds for
set-to-set matching with neural networks. The loss function for training these networks must also
maintain order-invariance to effectively calculate distance functions between pairs of instances within
the sets, as seen in DeepEMD (Zhang et al., 2020a).

Similarity (Metric) Learning. This research focuses on developing functions that measure the
correlation between two objects (Ma and Manjunath, 1996; Balcan and Blum, 2006; Yu et al., 2008),
and has been successfully applied to various applications, including face recognition (Faraki et al.,
2021; Cao et al., 2013), few-shot image classification (Zhang et al., 2020a; Oh et al., 2022), emotion
matching (Lin et al., 2016), and re-identification (Zhou et al., 2017a; Liao et al., 2017). Recently,
these techniques have been integrated into deep learning (Liu et al., 2019; Cheng et al., 2018; Ma
et al., 2021; Liao et al., 2017; Zhou et al., 2017b) for representation learning in embedding spaces,
where objects from the same set are closer together, and objects from different sets are further apart.
However, learning a model from all sample pairs is challenging due to high computational complexity
and poor local minima during training (Kaya and Bilge, 2019; Qian et al., 2019; Huang et al., 2016).
Thus, designing effective and efficient loss functions is a key issue in deep similarity learning (Elezi
et al., 2020; Wang et al., 2019). In contrast, we address this problem by utilizing the statistics of
minimum distances between the items of sets to improve computational efficiency and performance.

Few-Shot Classification. This task aims to train a classifier to recognize both seen and unseen classes
with limited labeled examples (Chen et al., 2019a). During training, the model learns a generalized
classification ability in varying classes (Oreshkin et al., 2018; Finn et al., 2017). In the testing phase,
when presented with entirely new classes, the model classifies by calculating the closest similarity
measurement (Chen et al., 2019a; Naik and Mammone, 1992). Formally, in few-shot learning, the
training set includes many classes, each with multiple samples (Li et al., 2018; Ren et al., 2018). For
example, C classes are randomly selected from the training set and K samples from each category
(totaling C ×K samples) are used as input to the model. A batch of samples from the remaining
data in these C classes is then used as the model’s prediction target (batch set). The model must learn
to distinguish these C classes from C ×K pieces of data, a task known as a C-way K-shot problem.

Point Cloud Completion. This task involves an important objective of inferring the complete shape
of an object or scene from incomplete raw point clouds. Recently, numerous deep learning approaches
have been developed to address this problem. For example, PCN (Yuan et al., 2018) extracts global
features directly from point clouds and generates points using the folding operations from FoldingNet
(Yang et al., 2018). Zhang et al. (2020b) proposed extracting multiscale features from different
network layers to capture local structures and improve performance. Attention mechanisms, such
as the Transformer (Vaswani et al., 2017), excel in capturing long-term interactions. Consequently,
SnowflakeNet (Xiang et al., 2021), PointTr (Yu et al., 2021b), and SeedFormer (Zhou et al., 2022)
emphasize the decoder component by incorporating Transformer designs. PointAttN (Wang et al.,
2022) is built entirely on Transformer foundations. Recently, Lin et al. (2023b) introduced a HyperCD
loss for training neural networks that defines traditional CD in a hyperbolic space. Furthermore, Lin
et al. (2023a) proposed an InfoCD loss by incorporating the contrastive concept into the CD formula.

Gumbel Distribution. In machine learning and computer vision, the Gumbel distribution has been
widely used in sampling methods (Maddison et al., 2014; Kool et al., 2019) and reparameterization
techniques (Huijben et al., 2022; Kusner and Hernández-Lobato, 2016; Potapczynski et al., 2020). For
example, Hancock and Khoshgoftaar (2020) introduced the Gumbel-Softmax reparameterization to
enable differentiable sampling from a discrete distribution during backpropagation in neural networks.
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3 APPROACH

3.1 PRELIMINARIES

Notations & Problem Definition. We denote X1 = {x1,i} ∼ P1,X2 = {x2,j} ∼ P2 as two sets of
points (or items) that are sampled from two unknown distributions P1,P2, respectively, and K as the
number of nearest neighbors considered for each point. Also, we refer to | · | as the cardinality of a
set, and ∥ · ∥ as the ℓ2-norm of a vector. Given these notations, our goal is to predict the set-to-set
similarity, κ(X1,X2), based on the conditional probability p(P1 = P2|X1,X2).

Gumbel Distributions. Recall that the Gumbel distribution is used to model the distribution of the
maximum (or minimum by replacing the maximum with the negative of minimum) of a number of
samples from various distributions. Here we list the definition of a Gumbel distribution as follows:
Definition 1 (Gumbel Distribution). The probability density function (PDF) of a Gumbel distribution
with parameters µ ∈ R, σ > 0, denoted as Gumbel(µ, σ), for a random variable x ∈ R is defined as

p(x) =
1

σ
exp{−(y + exp{−y})}, where y =

x− µ

σ
. (1)

3.2 GPS: GUMBEL PRIOR SIMILARITY FOR SET-TO-SET MATCHING

Distributional Signatures. Given two sets of points X1,X2, we define the set of Euclidean distances
from each point in one set to its KNNs in the other set as their distributional signature:

D(X1,X2) =
{
d
(k)
min(x1,i) = ∥x1,i − x2,ik∥, d

(k)
min(x2,j) = ∥x2,j − x1,jk∥ | ∀k ∈ [K],∀i,∀j

}
(2)

where ik (resp. jk) denotes the index of the k-th nearest neighbor in X2 (resp. X1) for x1,i (resp.
x2,j), leading to an unordered set of K(|X1|+ |X2|) values.

Probabilistic Modeling. To compute GPS, we introduce the Gumbel distributions and distributional
signatures as latent variables, as shown in Figure 3, and propose a probabilistic framework as follows:

p(P1 = P2 | X1,X2) =
∑
q∈Q

∑
dmin∈D

p(P1 = P2, q, dmin | X1,X2)

=
∑
q∈Q

∑
dmin∈D

p(P1 = P2 | q)p(dmin | q,X1,X2), (3)

𝑃𝑃1 = 𝑃𝑃2 𝑞𝑞 𝑑𝑑min
𝑀𝑀 𝐾𝐾

𝑋𝑋1,𝑋𝑋2

Figure 3: Graphical model for computing the
conditional probability p

(
P1 = P2 | X1,X2

)
.

where q ∈ Q denotes a Gumbel distribution. Fig-
ure 3 illustrates the probability decomposition where
a Gumbel distribution q is selected for measuring
set-to-set similarity based on the distributional sig-
natures between sets. Note that the distributions
of each k-th nearest neighbor distances could be
modeled using a mixture of M independent Gumbel
distributions. Consequently, Equation (3) can be
further rewritten as follows:

p(P1 = P2 | X1,X2) ∝
∑
k,m

∑
i

p
(
d
(k)
min(x1,i);αk,m, βk,m

)
+
∑
j

p
(
d
(k)
min(x2,j);αk,m, βk,m

) ,

(4)

where k ∈ [K],m ∈ [M ] and {αk,m, βk,m} denote the predefined Gumbel parameters of the m-th
mixture for fitting the k-th nearest neighbor distances. For simplicity, we use the same mixture for
both sets (but they can be different). Note that here we take p(q) and p(P1 = P2 | q) as two constants
with no prior knowledge.

Reparametrization with Minimum Euclidean Distances. The KNN distances are sets of (condi-
tional) minima, not maxima. Therefore, we need to convert these minimum distances to some form of
maximum values that can be modeled using Gumbel. Considering both computational complexity and
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Figure 4: Illustration of the distributions of minimum distances (with the learned best model) at test
time for (left) point cloud completion and (right) few-shot image classification.

learning objectives, we propose reparametrizing x
def
= − log(dmin + δ) in Equation (1), where δ ≥ 0

denotes a distance shift (see Section 3.3 for more discussions), and rewrite Equation (4) accordingly
as follows, which formally defines our GPS:

κ(X1,X2)

def
=

∑
k,m

∑
i

D
(k,m)
min (x1,i) exp{−D

(k,m)
min (x1,i)}+

∑
j

D
(k,m)
min (x2,j) exp{−D

(k,m)
min (x2,j)}

 , (5)

where µk,m =
logαk,m

βk,m
, σk,m = 1

βk,m
> 0, αk,m = e

µk,m
σk,m > 0, βk,m = 1

σk,m
> 0, D

(k,m)
min (x1,i) =

αk,m

[
d
(k,m)
min (x1,i) + δk,m

]βk,m

, D
(k,m)
min (x2,j) = αk,m

[
d
(k,m)
min (x2,j) + δk,m

]βk,m

, respectively.

3.3 ANALYSIS

Proposition 1. Letting f(x) = xe−x, x > 0, then f has a unique maximum at x = 1, and is concave
when 0 < x < 2, otherwise convex when x > 2,

Proof. By taking the first-order derivative of f , ∇f(x) = (1 − x)e−x, and setting it to 0, we can
show that f has a unique extremum at x = 1. By taking the second-order derivative, ∇2f(x) =
−(2−x)e−x, we can easily show its convexity and concavity by looking at the signs of the values.

Gradients decrease (exponentially) when minimum distances approach the mode. This can be
easily found from the form of the gradient in the proof above. As a result, the contribution of the
gradient from a data sample in backpropagation will be smaller if its minimum distance is closer
to the mode, making it less important in training. In other words, the training will focus more on
correcting poor predictions by adaptively assigning higher weights in backpropagation. Note that all
α’s and β’s in GPS have an impact on the gradients in learning.

Distance Shifting. In many applications, such as point cloud completion, the objective is to minimize
the distances between predictions and the ground truth. In these scenarios, the mode of a Gumbel

distribution is expected to be 0, which results in δk,m =
(
αk,m

)− 1
βk,m > 0. To maximize similarity

during training, all minimum distances should be enforced to approach this mode. Therefore, our
reparametrization includes dmin + δk,m because, as dmin approaches 0, − log(dmin) would tend
toward infinity, contradicting the goal of maximizing similarity by approaching the mode. However,
− log(dmin+ δk,m) avoids this problem. Figure 4 (left) shows an example using a randomly sampled
airplane instance from ShapeNet (see our experiments on point cloud completion for more details),
where all minimum distances are approaching 0 as well as the Gumbel mode, achieving both goals of
minimizing distance and maximizing similarity simultaneously.

Similarity Embedding. Also in many applications, such as few-shot image classification, the
objective is to minimize some loss, e.g., cross-entropy for classification, that depends on set-to-set
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Table 1: α and β search with 1st nearest neighbors for few-shot classification (%) on CIFAR-FS.
α 0.5 1 1 2 2 2 2 5 2 2 5 2 2.5 3 4 6
β 2 0.5 1 0.5 2 1 1.5 2 0.5 3.5 4 2 2 2 2 2

Acc 72.75 72.51 73.23 73.54 73.67 73.14 73.08 74.22 72.14 73.23 73.89 73.71 73.52 74.14 74.17 73.80

Table 2: α and β search using 2nd nearest neighbors performance (%) on CIFAR-FS.
α 0.1 0.5 1 1 2 3 2 2 2 2 2.5 3.5 4 5
β 2 2 0.5 2 2 2 0.5 2.5 3.5 4 2 2 2 5

Acc 71.67 72.84 73.17 73.04 73.08 73.66 72.45 72.85 73.23 72.67 73.37 72.95 73.44 60.74

similarity. In such cases, the minimum distances are not necessarily as small as possible, neither
matching with the Gumbel distributions, as long as they help distinguish the data towards minimizing
the loss, e.g., higher similarities for positive pairs and lower for negative pairs. Therefore, we do
not need distance shifting and simply set δ = 0. Figure 4 (right) illustrates a distribution of learned
minimum distances for few-shot image classification (see our experiments for more details), compared
with the Gumbel distribution used in training, where all the minimum distances are close to 1.

i.i.d. Assumption. A Gumbel distribution is used to model the maximum of a set of i.i.d. random
variables, which is hardly valid in our modeling. However, similar to the bag-of-word model (Zhang
et al., 2010), empirically such an assumption seems to work very well in our modeling, as shown in
Figure 3 (please refer to our experimental results).

4 EXPERIMENTS

4.1 FEW-SHOT IMAGE CLASSIFICATION

Table 3: Performance (%) using mixtures of Gum-
bels and NNs on CIFAR-FS.

1st NN (5, 2) (3, 2) (3, 2) (2.5, 2) (3, 2)
(α, β) (2, 2) (2, 2) (3, 2) (5, 2)

2nd NN (3, 2) (2.5, 2) (4, 2) (2, 2) (4, 2)
(α, β) (4, 2) (2, 2) (4, 2) (1, 2)

Acc 73.89 74.17 74.09 74.12 73.62

We conduct our experiments on five benchmark
datasets: miniImageNet (Vinyals et al., 2016),
tieredImageNet (Ren et al., 2018), Fewshot-
CIFAR100 (Oreshkin et al., 2018), CIFAR-
FewShot (Bertinetto et al., 2018), and Caltech-UCSD Birds-200-2011 (Wah et al., 2011). We
follow the standard protocols in the literature to split these datasets for our training and testing.

Network Framework. We take the framework in DeepEMD (Zhang et al., 2020a)1 for fair compar-
isons with different losses. Following the literature (Sun et al., 2019; Chen et al., 2021; Liu et al.,
2021; Chikontwe et al., 2022), we employ ResNet-12 as our network backbone. We notice that
DeepEMD and its extensions have different implementations. Precisely, we use the DeepEMD-FCN
network for comparisons and report our results in our experiments. We also observe that GPS with
the other implementations of DeepEMD can still significantly improve the performance. For instance,
by replacing FCN with Grid and Sampling layers (Zhang et al., 2022), our GPS in 1-shot 5-way can
improve 1.2% over DeepEMD with Grid and 1.3% with Sampling.

Training Objective. Same as DeepEMD, we optimize the following objective for the few-shot tasks:

min
θ,ω

∑
u,v

ℓ(κ(Xu,Xv), yu, yv;ω), s.t.Xu = {f(xu,i; θ)},Xv = {f(xv,j ; θ)}, (6)

where xu,i, xv,j stand for two patches from the u-th and v-th images with labels yu, yv , respectively,
f for a neural network parametrized by θ, and ℓ for a loss parametrized by ω. In our GPS, k uses
KNNs to determine the matches between patches, while in DeepEMD a differentiable EMD was
proposed to find the matches. We reuse the framework by replacing the EMD with our GPS.

Training Protocols. Following DeepEMD, we re-implement all pre-training, meta-training, valida-
tion and testing stages with different loss functions, and retrain the networks from scratch. We keep
all the hyperparameters the same as DeepEMD but fine-tune the loss-related hyperparameters, if exist,
to report best performance. For better comparison, we rerun the public code and report our results
whenever possible; otherwise, we cite the original results for the remaining methods. In each result
table, the top-performing result is highlighted in bold. We conduct all experiments on a server with
10 NVIDIA RTX 6000 11G GPUs and another one with 10 NVIDIA Quadro RTX 6000 24G GPUs.

1https://github.com/icoz69/DeepEMD

https://github.com/icoz69/DeepEMD
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Figure 5: Comparison on (a) validation accuracy during training, and (b) running time per iteration.

Figure 6: Visual matching results by (top) our
GPS and (bottom) DeepEMD.

Table 4: Cross-domain results (%) (miniImagenet
→ CUB) on 1-shot 5-way and 5-shot 5-way tasks.

Model 1-shot 5-shot
ProtoNet 50.01±0.82 72.02±0.67
MatchingNet 51.65±0.84 69.14±0.72
cosine classifier 44.17±0.78 69.01±0.74
linear classifier 50.37±0.79 73.30±0.69
KNN 50.84±0.81 71.25±0.69

DeepEMD 51.07±0.59 75.27±0.48
CD 51.32±0.46 75.61±0.54
HyperCD 51.76±0.48 75.98±0.42
InfoCD 51.95±0.65 76.23±0.39

Ours: GPS 52.38±0.47 76.59±0.52

Ablation Study. We have conducted some experiments for few-shot image classification, including:

• M Gumbels, K Nearest Neighbors, and Mixtures: Table 1, Table 2 and Table 3 list our hyperparam-
eter search results for 1st NN only, 2nd NN only, and mixtures of Gumbels and NNs, respectively.
With proper tuning, the best results under different settings are close to each other, and the mixtures
seem to be more robust to the data, leading to similar performance with different combinations.

• Training Behavior & Running Time: Figure 5 (a) shows the validation accuracy vs. the number of
epochs, and our approach consistently outperforms the other two competitors. Figure 5 (b) shows
the running time with different loss functions to train the network, where our GPS (using 1 Gumbel
and 1st NN only) is the only one that can manage to preserve similar computational time to CD.

• Visualization of Matching Results: To understand the matching behavior, we visualize some
matching results in Figure 6. Compared with DeepEMD, our approach can effectively establish
correspondence between local regions more precisely with just simple nearest neighbor search.

Comparisons with Different Losses. Table 4, Table 5, and Table 6 summarize our comparison
results on few-shot image classification on different datasets with α = 5, β = 2 and 1 NN only. As
we see, our approach outperforms all the competitors on all the datasets, and is more robust than the
others, in general, which demonstrates the effectiveness and efficiency of GPS.

4.2 POINT CLOUD COMPLETION

Datasets & Backbone Networks. We conduct our experiments on the five benchmark datasets: PCN
(Yuan et al., 2018), ShapeNet-55/34 (Yu et al., 2021b), ShapeNet-Part (Yi et al., 2016), and KITTI
(Geiger et al., 2012). We compare our method using seven different existing backbone networks, i.e.,
FoldingNet (Yang et al., 2018), PMP-Net (Wen et al., 2021), PoinTr (Yu et al., 2021b), SnowflakeNet
(Xiang et al., 2021), CP-Net (Lin et al., 2022), PointAttN (Wang et al., 2022) and SeedFormer (Zhou
et al., 2022), by replacing the CD loss with our GPS wherever it occurs.

Training Objective. Similar to InfoCD (Lin et al., 2023a), we optimize the following objective:

max
θ

∑
u

κ(f(Xu; θ),Yu), (7)
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Table 5: Results of 5-way (%) on miniImageNet and tieredImageNet datasets.

Method miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

cosine classifier (Chen et al., 2019b) 55.43±0.31 71.18±0.61 61.49±0.91 82.37±0.67
ProtoNet (Snell et al., 2017) 60.37±0.83 78.02±0.57 65.65±0.92 83.40±0.65
MatchingNet (Vinyals et al., 2016) 63.08±0.80 75.99±0.60 68.50±0.92 80.60±0.71

DeepEMD (Zhang et al., 2020a) 63.36±0.75 79.15±0.66 70.48±0.78 83.89±0.67
CD 63.40±0.46 79.54±0.39 70.23±0.64 84.01±0.31
PWD (Rowland et al., 2019) 63.92±0.77 78.77±0.37 70.69±0.92 83.88±0.34
SWD (Kolouri et al., 2019) 63.15±0.76 78.46±0.41 69.72±0.93 83.02±0.33
GSWD (Kolouri et al., 2019) 63.66±0.72 78.92±0.47 70.25±0.86 83.62±0.31
ASWD (Nguyen et al., 2021) 63.16±0.75 78.87±0.45 69.30±0.91 83.71±0.38
HyperCD (Lin et al., 2023b) 63.63±0.65 79.78±0.73 70.58±0.81 84.27±0.48
InfoCD (Lin et al., 2023a) 64.01±0.32 80.87±0.64 70.97±0.59 84.54±0.36

Ours: GPS 66.27±0.37 81.19±0.47 73.16±0.43 85.52±0.48

Table 6: 1-shot 5-way and 5-shot 5-way performance comparison (%).

Method CIFAR-FS Fewshot-CIFAR100 Caltech-UCSD Birds
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet - - 41.54±0.76 57.08±0.76 66.09±0.92 82.50±0.58
DeepEMD 71.16±0.42 85.12±0.29 43.93±0.82 61.01±0.41 67.04±0.31 85.12±0.76
CD 71.75±0.55 85.48±0.51 44.15±0.46 61.22±0.58 67.11±0.46 85.31±0.59
PWD 71.58±0.31 84.76± 0.33 43.47±0.29 60.41±0.41 65.60±0.33 84.87±0.45
SWD 70.99±0.34 84.52±0.37 43.32±0.28 60.31±0.31 65.44±0.32 84.38±0.41
ASWD 71.45±0.32 85.26±0.35 43.83±0.29 60.89±0.34 65.45±0.34 84.76±0.39
HyperCD 72.02±0.41 85.77±0.43 44.42±0.33 61.59±0.74 67.45±0.38 85.42±0.75
InfoCD 72.31±0.23 85.91±0.39 44.81±0.43 61.87±0.66 67.82±0.42 85.90±0.68
Ours: GPS 74.22±0.22 86.98±0.23 46.75±0.28 62.91±0.47 69.42±0.33 86.78±0.62

where (Xu,Yu) denotes a pair of a partial point cloud and its ground-truth complete point cloud and
f is a network (e.g., one of the seven backbone networks) parametrized by θ.

Table 8: Performance com-
parison on ShapeNet-Part.

Losses L2-CD×103

L1-CD 4.16±0.028
L2-CD 4.82±0.117
DCD 5.74±0.049
PWD 14.39±0.024
SWD 6.28±0.073
GSWD 6.26±0.034
ASWD 7.52±0.058
HyperCD 4.03±0.007
InfoCD 4.01±0.004

GPS 3.94±0.003

Training Protocols. We use the same training hyperparameters such
as learning rates, batch sizes and balance factors as the original losses
for fair comparisons. We conduct our experiments on a server with 4
NVIDIA A100 80G GPUs and one with 10 NVIDIA Quadro RTX 6000
24G GPUs due to the large model sizes of some baseline networks.

Evaluation. Following the literature, we evaluate the best performance
of all the methods using vanilla CD (lower is better). We also use F1-
Score@1% (Tatarchenko et al., 2019) (higher is better) to evaluate the
performance on ShapeNet-55/34. For KITTI, we utilize the metrics
of Fidelity and Maximum Mean Discrepancy (MMD) for each method
(lower is better for both metrics).

Grid Search on (α, β). Table 7 summarizes our search results. As we
discussed in Section 3.3, all the settings produce similar performance.
Considering the running time and hyperparameter search results in
few-shot classification, in our experiments on point cloud completion, we only use 1st NNs and a
single Gumbel distribution to fit the data, without further tuning.

State-of-the-art Result Comparisons. We summarize our comparisons as follows:

• ShapeNet-Part: We begin by presenting our performance comparison in Table 8 on the ShapeNet-
Part dataset using CP-Net. Evidently, our approach outperforms all other competitors.

• ShapeNet-34: We evaluate performance across 34 seen categories (used during training) and
21 unseen categories (not used during training), detailing our results in Table 9. It is evident
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Table 7: α and β search with 1st nearest neighbors on ShapeNet-Part using CP-Net.

α 1 1 1 1 1 1 0.5 2 4 2
β 0.4 0.8 1 1.2 1.6 2 1 1 1 2

CD 4.29 3.98 3.94 4.04 4.34 4.68 4.11 4.05 4.13 4.72

Table 9: Results on ShapeNet-34 using L2-CD×1000 and F1 score.

Methods 34 seen categories 21 unseen categories
CD-S CD-M CD-H Avg. F1 CD-S CD-M CD-H Avg. F1

FoldingNet 1.86 1.81 3.38 2.35 0.139 2.76 2.74 5.36 3.62 0.095
HyperCD + FoldingNet 1.71 1.69 3.23 2.21 0.148 2.55 2.59 5.19 3.44 0.122
InfoCD + FoldingNet 1.54 1.60 3.10 2.08 0.177 2.42 2.49 5.01 3.31 0.157

Ours: GPS + FoldingNet 1.49 1.55 3.02 2.02 0.182 2.39 2.43 5.00 3.27 0.159
PoinTr 0.76 1.05 1.88 1.23 0.421 1.04 1.67 3.44 2.05 0.384

HyperCD + PoinTr 0.72 1.01 1.85 1.19 0.428 1.01 1.63 3.40 2.01 0.389
InfoCD + PoinTr 0.47 0.69 1.35 0.84 0.529 0.61 1.06 2.55 1.41 0.493

Ours: GPS + PoinTr 0.43 0.64 1.27 0.78 0.533 0.60 1.04 2.52 1.38 0.495
SeedFormer 0.48 0.70 1.30 0.83 0.452 0.61 1.08 2.37 1.35 0.402

HyperCD + SeedFormer 0.46 0.67 1.24 0.79 0.459 0.58 1.03 2.24 1.31 0.428
InfoCD + SeedFormer 0.43 0.63 1.21 0.75 0.581 0.54 1.01 2.18 1.24 0.449

Ours: GPS+ SeedFormer 0.42 0.61 1.20 0.74 0.582 0.52 1.00 2.15 1.22 0.451

that our approach consistently improves the performance of baseline models, indicating its high
generalizability for point cloud completion tasks.

• ShapeNet-55: We evaluate the adaptability of our method across datasets for tasks with greater
diversity. Table 11 lists the L2-CD across three difficulty levels, along with the average. Following
the literature, we present results for five categories (Table, Chair, Plane, Car, and Sofa) with over
2,500 training samples each, as shown in the table. Additionally, we provide results using the
F1 metric. Once again, our approach significantly improves the baseline models, especially with
simpler networks. We also include some visualization results in Figure 7.

• KITTI: To validate the effectiveness of GPS for point cloud completion on a large-scale real-
world benchmark, we follow (Xie et al., 2020) to finetune two baseline models with GPS on
ShapeNetCars (Yuan et al., 2018) and evaluate their performance on KITTI. We report the Fidelity
and MMD metrics in Table 10, observing that GPS consistently improves the baseline models.

• PCN: We also summarize the results on another benchmark dataset, PCN, with additional backbones
in Table 12, showcasing state-of-the-art performance in point cloud completion.

Table 10: Results on KITTI in terms of the fidelity and MMD metrics.
FoldingNet HyperCD+F. InfoCD+F. GPS+F. PoinTr HyperCD+P. InfoCD+P. GPS+P.

Fidelity ↓ 7.467 2.214 1.944 1.883 0.000 0.000 0.000 0.000
MMD ↓ 0.537 0.386 0.333 0.302 0.526 0.507 0.502 0.449

5 CONCLUSION

In this paper, we present GPS, a novel, effective, and efficient similarity learning framework for
set-to-set matching. Our method fits a predefined Gumbel distribution to the negative log minimum
distances between set items. Originating from a probabilistic graphical model, our approach allows
multiple Gumbel distributions to model the distributions of KNN distances as distributional signatures.
We demonstrate superior performance in few-shot image classification and point cloud completion
compared to traditional distance metrics, while maintaining a similar running time to CD.

Limitations. Finding optimal hyperparameters for Gumbel distributions to fit the distance distri-
butions can be time-consuming, particularly when dealing with large sets, such as 16,384 points
per object in PCN and ShapeNet-55/34. In future work, we plan to develop general guidelines for
efficiently determining these hyperparameters.
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Table 11: Results on ShapeNet-55 using L2-CD×1000 and F1 score.

Methods Table Chair Plane Car Sofa CD-S CD-M CD-H Avg. F1

FoldingNet 2.53 2.81 1.43 1.98 2.48 2.67 2.66 4.05 3.12 0.082
HyperCD + FoldingNet 2.35 2.62 1.25 1.76 2.31 2.43 2.45 3.88 2.92 0.109
InfoCD + FoldingNet 2.14 2.37 1.03 1.55 2.04 2.17 2.50 3.46 2.71 0.137

Ours: GPS + FoldingNet 2.07 2.30 1.02 1.47 2.01 2.13 2.44 3.37 2.64 0.143

PoinTr 0.81 0.95 0.44 0.91 0.79 0.58 0.88 1.79 1.09 0.464
HyperCD + PoinTr 0.79 0.92 0.41 0.90 0.76 0.54 0.85 1.73 1.04 0.499
InfoCD + PoinTr 0.69 0.83 0.33 0.80 0.67 0.47 0.73 1.50 0.90 0.524

Ours: GPS + PoinTr 0.61 0.79 0.31 0.76 0.64 0.41 0.68 1.44 0.84 0.529

SeedFormer 0.72 0.81 0.40 0.89 0.71 0.50 0.77 1.49 0.92 0.472
HyperCD + SeedFormer 0.66 0.74 0.35 0.83 0.64 0.47 0.72 1.40 0.86 0.482
InfoCD + SeedFormer 0.65 0.72 0.31 0.81 0.62 0.43 0.71 1.38 0.84 0.490

Ours: GPS + SeedFormer 0.63 0.70 0.30 0.79 0.61 0.42 0.69 1.37 0.82 0.493

Table 12: Per-point L1-CD ×1000 (lower is better) on PCN.

Methods Plane Cabinet Car Chair Lamp Couch Table Boat Avg.

FoldingNet (Yang et al., 2018) 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31
HyperCD + FoldingNet 7.89 12.90 10.67 14.55 13.87 14.09 11.86 10.89 12.09
InfoCD + FoldingNet 7.90 12.68 10.83 14.04 14.05 14.56 11.61 11.45 12.14

Ours: GPS + FoldingNet 7.38 12.61 10.46 13.12 11.92 13.39 10.86 10.59 11.30
PMP-Net (Wen et al., 2021) 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25 8.73

HyperCD + PMP-Net 5.06 10.67 9.30 9.11 6.83 11.01 8.18 7.03 8.40
InfoCD + PMP-Net 4.67 10.09 8.87 8.59 6.38 10.48 7.51 6.75 7.92

Ours: GPS + PMP-Net 4.52 10.02 8.80 8.45 6.31 10.42 7.46 6.70 7.84
PoinTr (Yu et al., 2021b) 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29 8.38

HyperCD + PoinTr 4.42 9.77 8.22 8.22 6.62 9.62 6.97 6.67 7.56
InfoCD + PoinTr 4.06 9.42 8.11 7.81 6.21 9.38 6.57 6.40 7.24

Ours: GPS + PoinTr 4.03 9.39 8.03 7.78 6.18 9.33 6.56 6.38 7.21
SnowflakeNet (Xiang et al., 2021) 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40 7.21

HyperCD + SnowflakeNet 3.95 9.01 7.88 7.37 5.75 8.94 6.19 6.17 6.91
InfoCD + SnowflakeNet 4.01 8.81 7.62 7.51 5.80 8.91 6.21 6.05 6.86

Ours: GPS + SnowflakeNet 3.97 8.79 7.61 7.47 5.73 8.85 6.15 6.03 6.82
PointAttN (Wang et al., 2022) 3.87 9.00 7.63 7.43 5.90 8.68 6.32 6.09 6.86

HyperCD + PointAttN 3.76 8.93 7.49 7.06 5.61 8.48 6.25 5.92 6.68
InfoCD + PointAttN 3.72 8.87 7.46 7.02 5.60 8.45 6.23 5.92 6.65

Ours: GPS + PointAttN 3.70 8.83 7.42 7.00 5.59 8.43 6.22 5.91 6.63
SeedFormer (Zhou et al., 2022) 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85 6.74

HyperCD + SeedFormer 3.72 8.71 7.79 6.83 5.11 8.61 5.82 5.76 6.54
InfoCD + SeedFormer 3.69 8.72 7.68 6.84 5.08 8.61 5.83 5.75 6.52

Ours: GPS + SeedFormer 3.68 8.69 7.65 6.80 5.05 8.55 5.72 5.63 6.48

Figure 7: Row-1: Inputs of incomplete point clouds. Row-2: Outputs of Seedformer with CD.
Row-3: Outputs of Seedformer with GPS. Row-4: Ground truth.
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